Explicit Computation of Gross-stark Units over Real Quadratic Fields
نویسندگان
چکیده
We present an effective and practical algorithm for computing Gross-Stark units over a real quadratic base field F. Our algorithm allows us to explicitly construct certain relative abelian extensions of F where these units lie, using only information from the base field. These units were recently proved to always exist within the correct extension fields of F by Dasgupta, Darmon, and Pollack, without directly producing them.
منابع مشابه
Stark's conjecture over complex cubic number fields
Systematic computation of Stark units over nontotally real base fields is carried out for the first time. Since the information provided by Stark’s conjecture is significantly less in this situation than the information provided over totally real base fields, new techniques are required. Precomputing Stark units in relative quadratic extensions (where the conjecture is already known to hold) an...
متن کاملGross–stark Units, Stark–heegner Points, and Class Fields of Real Quadratic Fields
Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields by Samit Dasgupta Doctor of Philosophy in Mathematics University of California, Berkeley Professor Kenneth Ribet, Chair We present two generalizations of Darmon’s construction of Stark–Heegner points on elliptic curves defined overQ. First, we provide a lifting of Stark–Heegner points from elliptic curves to cert...
متن کاملA Conjectural Product Formula for Brumer–Stark Units over Real Quadratic Fields
Following methods of Hayes, we state a conjectural product formula for ratios of Brumer–Stark units over real quadratic fields.
متن کاملElliptic units for real quadratic fields
1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...
متن کاملHeegner points, Stark-Heegner points, and values of L-series
Elliptic curves over Q are equipped with a systematic collection of Heegner points arising from the theory of complex multiplication and defined over abelian extensions of imaginary quadratic fields. These points are the key to the most decisive progress in the last decades on the Birch and Swinnerton-Dyer conjecture: an essentially complete proof for elliptic curves over Q of analytic rank ≤ 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012